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Vision

� More effective use of cluster resources

� Lower response time

� Higher throughput

� Transparent fault tolerance

� No application modifications

STORM – p.2



Vision

� Buffered Coscheduling (BCS) is a new
methodology to:

� Improve system responsiveness and utilization,

� Tolerate inefficient programs (communication
and load imbalance),

� Implement fault-tolerance
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Vision
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� Buffered Coscheduling tries to achieve these goals
by greatly simplifying the system software
(resource management, communication libraries
and fault-tolerance)
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Vision
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� Buffered Coscheduling implements resource
management, communication libraries and
fault-tolerance on top of a common microkernel
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STORM
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� In this talk we will focus on STORM, a resource
manager implemented on top of the Buffered
Coscheduling microkernel
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STORM

STORM (Scalable TOol for Resource Management)

� Goals

� Portability

� High performance resource management

� Research tool to investigate new job scheduling
algorithms

� Key innovation: software architecture that enables
resource management to exploit low-level network
features
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Outline

� Overview of resource management

� STORM architecture

� Implementation

� Performance evaluation

� Scalability analysis
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Resource Management

� Resource allocation for parallel jobs

� Job launch and termination

� Cluster management

� Monitoring and debugging
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Characteristics of Desktops versus
Clusters

Characteristic Desktop Cluster

Mean time between

user-visible failures

Years Days down to hours

Scheduling Timeshared Batch queued or

gang scheduled with

large quanta

Job-launching speed � �

second Arbitrarily long

(batch) or many

seconds (gang

scheduled)
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State of the art in Resource
Management

Resource Managers (e.g., PBS, LSF, RMS,
LoadLeveler, Maui) are typically implemented using

� TCP/IP

� Favors portability over performance

� Non-scalable algorithms for the
distribution/collection of data and control
messages

� Favors development time over performance

� Performance not important for small clusters, but
crucial for large clusters � need fast and scalable
resource management
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STORM implementation structure

STORM functions
heartbeat, file
transfer, termina-
tion detection

(STORM helper functions) flow control, queue
management

STORM mechanisms

XFER-AND-
SIGNAL, TEST-
EVENT, COMPARE-
AND-WRITE

Network primitives
remote DMA, net-
work conditionals,
event signaling, . . .
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STORM mechanisms

STORM is based on only three mechanisms

XFER-AND-SIGNAL Transfer (PUT) a block of data from
local memory to the global memory of a set of
nodes (possibly a single node).

TEST-EVENT Local synchronization

COMPARE-AND-WRITE Global query with boolean
reduction

Efficient and scalable implementation of these mecha-

nisms � STORM is scalable
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Hardware support for
XFER-AND-SIGNAL

� XFER-AND-SIGNAL transfers multicast a block of
data to a group of nodes

� The multicast can be executed in HW
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Hardware support for
XFER-AND-SIGNAL

� The packet is routed through a root node during
the ascending phase

� The flow-through latency of each switch is only a
few tens of nanoseconds
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Hardware support for
XFER-AND-SIGNAL

� The packet reaches the set of destinations during
the descending phase
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Hardware support for
COMPARE-AND-WRITE

� COMPARE-AND-WRITE executes a binary query on
a set of nodes
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Hardware support for
COMPARE-AND-WRITE

� The results of the global query are combined on
the way up

� The “worst” result wins: Yes if all the nodes send a
positive ack, No otherwise
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Hardware support for
COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.
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Scalability of the STORM
Mechanisms
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� COMPARE-AND-WRITE scales efficiently on
Lemieux, Pittsburgh Supercomputing Center. Less
than 10 �s on 768 nodes/3072 processors
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Portability of the STORM
mechanisms

Network COMPARE-AND-WRITE ( �s) XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet

�� �
	 �� Unknown

Myrinet


� �
	 �� � �� �

Infiniband


� �	 � � Unknown

QsNET
� � � � �� � �

BlueGene/L � 
 �� � �
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Experimental Results

� Setup

� 64 nodes/256 processors ES40 Alphaserver
cluster

� 2 independent rails of Quadrics

� Linux 2.4.3

� Files are placed in a RAM disk, in order to avoid
I/O bottlenecks

� Experiments

� Job Launching

� Job Scheduling
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Launch times (unloaded system)

1 2 4 8 16 32 64 128 256

Processors

0

25

50

75

100

125

150

T
im

e 
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

� The launch time is essentially constant when we
increase the number of processors � STORM is
highly scalable
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Launch times (loaded system,
12MB executable)
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� Launch time is more sensitive to network load
rather than CPU load

� In the worst-case scenario it still takes only 1.5
seconds to launch a 12 MB file on 256 processors
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Measured and estimated launch
times
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� The model shows that in an ES40-based
Alphaserver a 12 MB binary can be launched in
only 135 ms on 16,384 nodes
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Measured and predicted performance
of existing job launchers

We compare the job launching performance of
STORM with

� rsh

� RMS

� GLUnix

� Cplant

� Bproc
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Measured and predicted performance
of existing job launchers
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Relative performance of Cplant,
BProc, and STORM
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Effect of time quantum with an
MPL of 2
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� Cluster-wide jobs can be scheduled as fast a local
process on a desktop OS.
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Effect of node scalability
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� The scheduling algorithm is scalable with the
number of nodes
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A selection of scheduling quanta
found in the literature

Resource Manager Minimal feasible scheduling quantum

RMS

���� � � �

milliseconds on 15 nodes (1.8% slowdown)

SCore-D

� � �

milliseconds on 64 nodes (2% slowdown)

STORM

�

milliseconds on 64 nodes (no observable slowdown)
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Conclusions

� STORM uses an innovative design based on a
small set of data-transfer and synchronization
mechanisms:

� XFER-AND-SIGNAL

� TEST-EVENT

� COMPARE-AND-WRITE

� STORM’s design makes it orders of magnitude
faster than the best reported results in the
literature for both job launching and process
scheduling.
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Conclusions (continued)

� STORM is a lightweight, flexible and scalable
environment for performing resource management
in large-scale clusters

� It is indeed possible to scale up a cluster without
sacrificing job-launching times, machine efficiency
or interactive response time.

� HW support for collective communication can
simplify system software and can help to achieve
efficiency and scalability
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Resources

More information can be found at the following URLs:

Los Alamos Performance and Architecture Laboratory
http://www.c3.lanl.gov/par arch

Resource management
http://www.c3.lanl.gov/˜fabrizio

Quadrics network
http://www.quadrics.com and
http://www.c3.lanl.gov/˜fabrizio/quadrics.html

DEMO in LANL booth (R3211)
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Quadrics Network: Elan
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Quadrics Network: Elan
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